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Beyond Mere Diversity: Tailoring Combinatorial Libraries for Drug
Discovery

Eric J. Martin*,† and Roger E. Critchlow‡

Chiron Corporation, 4560 Horton Street, EmeryVille, California 94608, and Daylight Chemical
Information Systems, Inc., 419 E. Palace AVenue, Santa Fe, New Mexico 87501

ReceiVed June 30, 1998

Combinatorial library design attempts to choose the best set of substituents for a combinatorial synthetic
scheme to maximize the chances of finding a useful compound, such as a drug lead. Initial efforts were
focused primarily on maximizing diversity, perhaps allowing some bias by the inclusion of a small, fixed
set of pharmacophoric substituents. However, many factors besides diversity impact good library design for
drug discovery. A library can be better “tailored” by assigning the candidate substituents to categories such
as polar, pharmacophoric, rigid, low molecular weight, and expensive. Stratified sampling by successive
steps of D-optimal design generates diverse designs which are also consistent with desirable profiles of
these properties. Comparing the diversity scores among design profiles reveals the tradeoffs between diversity,
physical property distributions, synthetic difficulty, expense, and pharmacophoric bias. The diversity scores
can be calibrated by scoring the best designs from subsets of the candidates made either from specific
classes of substituents or by randomly eliminating candidates. This procedure shows how poor random
designs are compared even to highly biased optimal designs. Library design requires a synergistic effort
between computational and synthetic medicinal chemists, so specialized interactive software has been
developed to integrate substructure searching, display, and statistical experimental design to facilitate this
interaction for the effective design of well-tailored libraries.

Introduction

Combinatorial library design is the attempt to choose the
“best” set of substituents for a combinatorial synthetic
scheme to maximize the chances of finding a useful
compound, such as a drug lead. Initial efforts in combina-
torial library design focused primarily on maximizing
information content and minimizing redundancy by maxi-
mizing “diversity”, allowing some bias by forcing the
inclusion of a small, fixed set of pharmacophoric substitu-
ents.1 Diverse libraries were designed, synthesized, and
screened, and potent ligands were identified.2,3 Inspection
of the hits, however, revealed that many were more flexible,
insoluble, lipophilic, or higher molecular weight than would
be preferred in a drug lead. This outcome underscored the
many factors beyond diversity which impact good combi-
natorial library design for drug discovery. Molecular weight
range, lipophilicity, ease of synthesis, phamacophore focus,
rigidity, reagent costs, solubility, incorporation of common
drug fragments, complementarity to other libraries, and
medicinal-chemical intuition should all be taken into
account. Merely maximizing diversity has been shown to
systematically bias the library away from the desired ranges
for many of these properties. The goal of library design
should be to provide high structural diversity while con-
straining pertinent physicochemical properties to suitable
ranges for small-molecule drugs. We have developed a
protocol, called “tailoring” the library, which achieves high

diversity while emphasizing desirable attributes and identify-
ing the tradeoffs which are inherent in the chemistry. One
can quickly see how much diversity is sacrificed by using
fewer groups that require protection or how many and which
pharmacophoric fragments might best be included in a target-
biased, yet diverse library. The entire process is illustrated
in Figure 1. Suitable reagents are identified from a database
of commercially available compounds. Structural properties
are calculated for each candidate substituent. From these a
“property space” is computed in which proximity reflects
similarity. The substituents are also divided into “bins” based
on additional properties, besides diversity, which are im-
portant in small-molecule drugs. Finally, a small set of
substituents are selected from the candidates that maximize
diversity while at the same time satisfying a specified profile
of these additional properties. The following example will
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Figure 1. Schematic illustration of designing a “tailored” combi-
natorial library. Candidate reagents are selected, properties are
computed, candidates are assigned to bins, and a small number of
substituents are selected which maximize diversity while matching
a desired profile of key pharmaceutical properties.
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illustrate in detail all of the steps in generating a typical
carefully tailored design and will present an analysis of the
results.

Background Theory

Similarity, Property Space, and Multidimensional Scal-
ing. Selection of substituents for a combinatorial library
entails two steps: the calculation of a “property space” in
which proximity between substituents reflects structural
similarity, and the subsequent selection of points that are
well distributed throughout that space. If the structural
properties are correlated with activity, substituents tightly
clustered in property space are potentially redundant, whereas
a widely and evenly dispersed set is “diverse”.

A vector of properties for each substituent can be regarded
as coordinates in a property space. Often, however, similari-
ties (i.e., distances) between compounds can be directly
calculated, but the coordinates cannot. Given a table of
properties (coordinates), the Pythagorean theorem can easily
be applied to compute a matrix of all pairwise dissimilarities
(distances). The reverse operation, calculating “latent”
properties for each substituent from a dissimilarity matrix,
is known as multidimensional scaling (MDS). It is compu-
tationally expensive, and if the similarity coefficient is not
a “metric”sand the Tanimoto similarity coefficient used
widely in drug discovery problems is not a metric4sit can
only be achieved approximately.5 It is currently practical for
sets of up to about 10 000 substituents, adequate for most
substituent selection problems.6

An algorithmic definition of “diversity” should incorporate
two key concepts: “redundancy” and “coverage”. A nonre-
dundant set of points is widely separated in space. A set of
points covers space if all regions of space, and in particular,
all the dimensions of the space, are sampled. While there
are methods for measuring the “diversity” of a set of points
that only require a matrix of the distances between pairs of
candidates, coordinates are required for the powerful cova-
riance-based methods, such as D-optimal or A-optimal design
(see Discussion). As an illustration, consider trying to select
a diverse geographical sampling of the country. A map (i.e.,
the coordinates) would be more helpful than just a table of
intercity distances. Methods based only on distances typically
can select points spread out in space, i.e., nonredundant sets,
but generally cannot identify collinearities, unrepresented
holes in the space, determine whether all dimensions have
been sampled, or recognize whether a point lies near the
center of the space or near the edges. In short, pure distance-
based methods assess redundancy only, but coordinate-based
methods assess coverage as well. The extra effort to apply
MDS to get coordinates is therefore justified, since a well-
tailored library greatly benefits from actual coordinates rather
than just a distance-based selection.

Experimental Design

Selecting a subset of experiments to best represent a much
larger potential candidate set falls under the discipline of
“experimental design”. Experimental design has been applied
to many pharmaceutical problems, including the design of
structure-activity relationship (SAR) compound sets,7-11 the

optimization of synthetic processes,12,13 the design of calibra-
tion standards in analytical chemistry,14 and the selection of
screening subsets from corporate chemical archives.15 D-
optimal design has recently been applied to selecting small
numbers of substituents from larger sets of suitable reagents
to use in synthetic combinatorial libraries for drug discov-
ery.16

In cases where any combination of property values can
be achieved, such as time, temperature, and reagent concen-
trations in a synthesis, precomputed classical designs are
available. For choosing among chemical substituents, which
offer only discrete, poorly distributed combinations of
properties, algorithmic designs such as D-optimal or A-
optimal design are preferred. In algorithmic designs, a
“candidate set” is identified, and a much smaller “design
set” is chosen from the candidates, which optimize a
mathematical criterion for design quality, i.e., “diversity”.
An initial set of substituents can optionally be preselected
for inclusion in the design, and that set can be “augmented”
to the desired size, choosing the remaining members so as
to optimize the diversity criterion. This set of substituents
can then be used as the initial set in a subsequent design
augmentation. This capacity to build up a complex design
from successive augmentations is the basis for our approach
to tailoring library designs.

Methods

Property Calculations. The property space of the sub-
stituents was calculated as previously described.1 The space
included the calculated octanol/water partition coefficient,
“shape” descriptors derived from principal components
analysis of 81 topological indices, “chemical functionality”
descriptors derived from MDS of Tanimoto similarities based
on Daylight 2-D substructure fingerprints, and “receptor
recognition” descriptors derived from MDS of similarities
from “atom layer tables”, which give the distribution along
the substituents of atoms, hydrogen-bonding groups, charged
groups, and aromatic groups. The numbers of chemical
functionality and receptor recognition descriptors were
determined as the fewest MDS dimensions required to
reproduce the dissimilarity matrix with a relative standard
deviation of 10%. These properties were chosen to character-
ize similarity and diversity with respect to lipophilicity,
shape, chemical functionality, and distribution of key receptor
binding features. The properties were automatically calcu-
lated using the program MAKESPACE, which comprises a
collection of commercial programs, C and FORTRAN code,
and Tcl scripts, all coordinated through the UNIX “make”
utility. The program takes lists of reagents or substituents
as input. It normalizes the structures by removing counte-
rions, standardizing resonance forms, etc. It then determines
the best commercial source for each reagent, computes the
similarities and properties, performs MDS to create the
property space, and loads the structures and properties into
a THOR database17 for searching with MERLIN.18

Substructure Searching.Tailored library design requires
the ability to rapidly and interactively sort or subset a
collection of reagents or candidate substituents by structural
criteria or physical properties. This is used both to identify
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feasible candidate reagents and to categorize substituents into
“bins” (see Results). Searching and sorting were performed
with MERLIN, and the subsets were stored as THOR data
tree files (TDT). Designs were displayed by TKPRADO, an
interactive, window driven, Tcl/Tk script that displays
structures using the Daylight PRADO utility.

Optimal Designs. The thousands of optimal designs
computed to choose the substituents are set up by an
interactive, window driven, Tcl/Tk program TAILOR, which
executes a slightly modified version of the public domain
FORTRAN program DOPT to perform the D-optimal
designs.19,20TAILOR also creates and manipulates files and
directories to organize the input and output data. It reads
and writes TDT files to interface with the Daylight software
for searching and displaying the chemical structures. In
addition, TAILOR performs automatic calibration designs
to aid interpretation of the results and also automatically finds
the best replacements for each compound in the design (see
below). MAKESPACE and TAILOR are not commercially
available programs, but most of the individual modules that
comprise them are.1 MAKESPACE and TAILOR primarily
automate their application.

To circumvent the D-optimal algorithm’s tendency to
select some points twice (see Discussion), TAILOR can
“saturate” the designs, i.e., it generates models where the
number of terms are equal to the desired number of
substituents. Saturated models are built up systematically by
first including an intercept and linear terms, in order, starting
with the largest principal component (PC). Squared terms
can optionally be added, followed by enough cross terms
starting with PC1× PC2, PC1× PC3, PC2× PC3, etc. to
saturate the model. For anN-dimensional property space,
this protocol covers up to (N2 + 3N)/2 points, e.g., up to
170 substituents for the 17 dimensions in the current
example. Higher terms can also be added if needed.

Results

Candidate Reagent Identification.Library design begins
with identifying the candidate pool of potential substituents.
This example study began with 7812 aliphatic amines and
9077 phenols in the available chemicals directory21 (ACD).
Most of these were not suitable, being too large, too
expensive, too hard to obtain, insufficiently reactive, contain-
ing toxic or labile moieties, or requiring too much protection
chemistry to be practical. The unsuitable compounds were
removed by a series of substructure and property range
searches using MERLIN. Table 1 shows the searches that
were used to remove undesirable amines. The specifics are
particular to each reaction scheme, and filters are applied
interactively while continuously reevaluating the reagent list.
For example, Br and I are passed by the very general rule in
step 6, but selected for removal later in step 19. Some
searches even included a hand inspection of the results in
which only some of the matching compounds were elimi-
nated. An extensive catalog of previously compiled queries
are available to streamline the filtering process. Even so, an
experienced library designersworking closely with the
chemist who developed the synthetic schemesshould expect
to spend no less than 2-4 h on this step. This is time well

spent. Culling out only the suitable reagents at the outset
saves far more time later on. The final list yielded 1083
amines and 825 phenols.

A complete set of useful reagents is not yet a substituent
candidate set. For instance, the same amine might be
available with two different counterions or be listed in the
ACD under several tautomeric or resonance forms. Likewise,
an unsymmetrical diamine could generate two different
substituents. MAKESPACE uses an extensive set of 144
rules to “standardize” the structures by eliminating counte-
rions and choosing standard tautomers and resonance forms.
This set of rules has been developed and tested over many
years and correctly handles virtually every small molecule
in the current ACD database. The original reagent structure
is kept as a link back into the ACD for later ordering the
reagents. Another set of rules identifies the best vendor and
price.

Property Calculation. The amine and phenol sets were
combined for a total of 1693 compounds for the property
calculations. Thus, all substituents for both positions were
embedded into a single property space, allowing diversity
to be maximized between sites as well as within sites.
Substituent properties were calculated by MAKESPACE as
described above, and a THOR database was generated
containing the standardized substituent structures, vendors,
prices, preferred names, and some computed properties
including logP, pKa, MW, number of rotatable bonds, and
distance from the centroid of property space. The property
space required five shape descriptors, seven chemical
functionality descriptors, and six receptor interaction descrip-
tors, as well as logP, for a total of 19 dimensions. Principal
components (PCs) analysis showed that 17 PCs explained
99.5% of the variance, so the last two PCs were disregarded.
In this example, the final substituent database contained 943
amines and 750 phenols.

Creation of Bins. The next task was the creation of bins.
To control the distribution of properties present in the library
and to evaluate the tradeoffs between high diversity and bias
toward drug-like properties, one first assigns the candidate
substituents to subsets representing desired (or undesired)
properties. These subsets of substituents to be emphasized
or deemphasized in the design are called “bins”. Each
substituent has many properties, and the bin catagories
overlap, so most are assigned to several bins. Table 2 shows
the bins used for the amine-derived position. The library was
to emphasize rigid, polar, validated, drug-like, and pharma-
cophoric substituents. The exact number of compounds to
be used from each bin was to be determined later as part of
the design process. The “validated” bin contained 76 amines
for which the yield and purity of the reaction had been
confirmed. The “seed” bin contained 4-methoxybenzylamine,
which was the validated point nearest the centroid of the
property space, as well as 4-hydroxyphenethylamine and
benzhydrylamine, whose corresponding side chains were
previously found in potent ligands for theR1-adrenergic and
µ-opiate receptors.2 The “extreme” category held 27 of the
35 amines farthest from the centroid of property space. These
compounds were mostly complex hydrocarbons or sugar
analogues. Typically, many intuitively undesirable com-
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pounds are concentrated at the extremes of property space.
If they were not isolated in a special bin, they would be
highly sampled in a diversity design. We wanted to limit
the number of highly fluorinated compounds, so the 30
amines with three or more fluorines were isolated in the FF
bin. The “good” bin held 699 amines that excluded the
extreme and FF groups, as well as some anticipated synthetic
and metabolic problems. “Rigid” held the 346 good amines
with two or fewer rotatable bonds. Table 3 shows a list of
significant fragments found in the 100 top-selling drugs. The
“Drugish” bin held 151 good amines that contained these
fragments. The “polar” bin held 378 substituents with at least
one H-bond acceptor atom and an estimated octanol/water
partition coefficient (logP) < 1.5 as a neutral amine. The
“tbu” bin held carboxylic acids available protected as the
tert-butyl ester. The “boc” group held diamines that can be
purchased boc-protected, and “Okamine” held diamines
expected to work without protection. The remaining bins are
self-explanatory combinations of the sets above.

Calibrations. To evaluate the loss of diversity incurred
by forcing the design to conform to various property profiles,
we first calculated some benchmark designs to identify the
boundaries of the diversity scale. The D-optimal diversity

scores have relative significance for designs of a given size
and model, but are difficult to interpret on an absolute scale.
The purpose of this particular design was to select a set of
50 substituents for a diversity position in a broad screening
combinatorial library, i.e., it was not aimed at any particular
biological target. Calibration designs were made by selecting
both D-optimal and random sets of 50 substituents from the
larger of the bins. These benchmark designs, shown in Table
4, establish a ladder of “D-scores” to calibrate the diversity
of the tailored designs as described below, as well as
demonstrating the diversity inherent in the individual bins.
For comparison between D-optimal design and a purely
distance-based method (see Discussion), some S-optimal
designs were also computed using the SAS QC software.22

The “S-scores” are listed in column 6. All D-optimal designs
were made for a quadratic model saturated with cross terms
using 17 of 19 PCs. The “methods” column indicates how
the design was created. “100%” simply indicates finding the
D-optimal (or S-optimal) design of 50 from the full set
mentioned in the second column. Other percentages indicate
that unbiased subsets were created from the “all” set by first
randomly choosing 50%, 20%, or 10% of the all set and
then computing the optimal design of 50 substituents from

Table 1. Criteria Used To Cull Acceptable Candidate Aminesa

description SMARTS

keep aliphatic primary [CX4][NH2]
keep aliphatic secondary & take union [CX4][NH][CX4]
remove MW> 250 N. A.
remove obscure vendors N. A.
remove cost> $500/g N. A.
remove weird elements [!C!c!O!o!N!n!S!s!F!Cl!Br!I!Na!Ca!K!P]
long unbranched chains [D2R0]∼[D2R0]∼[D2R0]∼[D2R0]∼[D2R0]∼[D2R0]
aromatic tricyclicbridgehead [aR3]
aromatic many cycles (kept a few) [aR2]a[aR2]
bridgehead (kept if substituted) [R3]
fluorines F. F. F. F. F.F
linear F’s FC(F)C(F)F
acids and enols *)*[OH]
long skinny (kept some) [D2R0]∼[D2R0]∼[D2R0]∼[D2R0]∼[D2R0]
thiophenes, furans [s,o]1cccc1
big rings [r8,r9,r10,r11,r12,r13,r14,r15]
epoxides C1OC1
alpha eliminators [O,o,N,n][CX4][O,o,N,n]
Br or I [Br,I]
enol-ethers CdCO
disulfides SS
benzofurans o1ccc2c1cccc2
benzoquinones OdC1CCC(dO)c2c1cccc2
N-O N-O
aldehydes Od[CH]
alkyl halides [CX4][Cl,Br,I]
isocyanates NdCdO
sulfides, disulfides [SD2]
mixed, unsymmetrical diamines [CX4][NH][CX4].[NH2][CX4]
secondary diamines (keep symmetrical) [CX4][NH][CX4].[CX4][NH][CX4]
primary diamines (keep symmetrical) [NH2][CX4].[NH2][CX4]
cyclopropylamines [NH]1CC1
elimination problems [NH,NH2]CC[$(C#N),$(NdO),$(SdO),$(CdO),[N+]]
elimination problems [$(C#N),$(NdO),$(SdO),$(CdO),[N+]][CH2][CH2][$(OCdO),$(NCdO),Br,Cl,I,

[N+],[n+],$(OSdO),$(ONdO)]
anilines [$([NH][CX4,c]),$([NH2])]c
hindered primary amines [$([NH]C(*)(*)*),$([NH]C*(*)(*)*)
hindered secondary amines *[CX4](*)([NH])[CX4](*)*
acidic C-H [$(C#N),$(NdO),$(SdO),$(CdO),$(cn),$(cccn),[N+]][CH2,CH][$(C#N),$(NdO),

$(SdO),$(CdO),$(cn),$(cccn),[N+]]
a The SMARTS queries in column 2 can be used in Merlin to eliminate reagents with the features described in column 1.
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those random subsets. The “random” method refers simply
to choosing 50 substituents from a set at random and then
determining its score with no optimal design step. All random
selections and subsequent optimizations were repeated five
times, so an average score and standard deviation are
reported.

Since the “all” set is the union of all bins, it establishes
the maximal possible D-score as 136. The set of 50 closest
tyramine analogues establishes a very nondiverse benchmark,
and its score of-148 can be considered a practical lower
bound. While there is some correspondence between the size
of a set and the resulting score, the correlation is low. Except
for the very restrictive set of low molecular weight-rigid-
polar compounds, the worst of the optimized designs from
restricted bins is still much better than selecting 50 substit-
uents at random from the “all” set. This illustrates how very
poor random designs are. The penalty for eliminating 50%
of all synthetically suitable compounds is not great, and even
eliminating 80% of the compounds at random retains
diversity comparable to that of the rigid or polar compounds
alone. The low molecular weight restriction limits diversity

drastically, almost as much as a calibration bin that only
includes the pure hydrocarbons.

D-Optimal “Tailored” Designs. Anticipated ranges of bin
membership for the tailored design were selected as shown

Table 2. Bin Profiles Used in Amine Designa

name description no. range tries

center validated point nearest centroid 1 0 0
pharma from previous assay hits 5 0 0
rigid two or fewer rotatable bonds 346 0 0
FF more than three fluorines 30 0 0
extreme more than three std dev from centroid 27 0 0
seed center+ two pharmas 3 3 1
LoRgPlV low MW, rigid, polar, validated 13 -10-14 3
boc available with boc-protected amine 6 1 1
tbu available witht-butyl-protected acid 9 2 2
LoPlrV low MW, polar, validated 21 -15-19 3
LoRgPlr low MW, rigid, polar 77 5-6 2
LoPlr low MW, polar 126 4-5 2
DrgPlr drug-like and polar 88 -30-34 3
OKamine diamines that need no protection 46 1 2
DrugV drug-like and validated 11 2-4 2
valid reaction has been validated 76 2 2
Drugish contain pieces from 100 top drugs 151 1 1
LowMW molecular weight< 130 229 2 2
polar H-bond acceptor and logP < 1.5 378 -46 3
FF_xtrm union of FF and extreme bins 57 2 2
good chemistry is expected to work well 699 2 2
HC hydrocarbons only 177 0 0
tyr_lik closest analogues to tyramine 50 0 0
all union of all bins above 762 0 0

a Column “no.” is the number of substituents that fit that category. Column “range” gives the acceptable numbers of substituents to be
taken from that bin. A range starting with a hyphen (-) indicates taking enough substituents from that bin to bring the total to that number.
Column “tries” shows the number of numerical attempts to find the D-optimal compound set.

Table 3. Fragments Found in 100 Top-Selling Drugs

fragment count fragment count

5-aromatic, [1,3] heteroatoms 21 pyridine 6
beta lactam 19 furan 5
5-aromatic, 1 heteroatom 16 quinazoline 5
6-nonaromatic, [1,4] heteroatoms 16 imidazole 4
pyrrolidine 16 indole 4
5-nonaromatic, [1,3] heteroatoms 14 naphthalene 4
6-aromatic, 1 heteroatom 13 purine 4
6-aromatic, [1,3] heteroatoms 13 benzimidazole 3
piperazine 12 pyrimidine 3
guanidine 11 quinoline 3
nitro 10 1,3-dioxolane 2
piperidine 7 morpholine 2
thiazole 7

Table 4. Results of Calibration Designsa

method bin size D-score D-σ S-score S-σ

100% all 762 136 3.23
50% all 381 124 2.6 3.01 0.02
20% all 152 105 4.5 2.65 0.05
100% rigid 346 105 2.63
100% polar 378 101 2.58
10% all 76 87 2.9 2.13 0.09
100% RgPlr 146 81 2.32
100% valid 76 80 2.11
100% Drugish 151 76 1.94
100% LowMW 229 66 2.01
100% DrgPlr 88 60 1.78
100% HC 177 61 2.00
100% LoRg 154 55 1.92
random all 50 50 3.6 1.42 0.16
random valid 50 47 7.5
random polar 50 39 5.8
random RgPlr 50 38 5.6
random rigid 50 37 8.2
random DrgPlr 50 21 4.6
100% LoRgPlr 77 16
random LowMW 50 5 7.8
random LoRg 50 3 10.0
random Drugish 50 -1 7.0
random LoRgPlr 50 -9 6.9
random HC 50 -16 5.4
100% tyr_lik 50 -148 0.5

a Column “method” refers to a random fraction of the “bin”, in
column 2, used for the design. (“Random” sets of 50 are 6.6% of
the “all” bin). Bin descriptions are in Table 2. Column “size” is
the number of candidates in the subset. D-score and S-score are
scores for D-optimal and S-optimal designs, respectively. Random
subsets were each sampled five times, with “D-σ” and “S-σ”
showing the standard deviations for the five attempts.
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in Table 2. Some categories, like small, rigid, polar groups,
were emphasized. Others, like large, hydrophobic, and
extreme groups, were deemphasized. The D-optimal designs
were all made for a quadratic model saturated with cross
terms, using the largest 17 of 19 PCs only. Separate designs
were made for each of the 1320 profiles consistent with these
ranges and a total design size of 50 amines, i.e., each design
of 50 was generated from a profile starting with the “seed”
set and then augmenting by D-optimal design with the
specified number of substituents from bin “LoRgPlV”. This
combined set was further augmented with the “boc” set, and
so on, until all bins had been appropriately sampled. The
order was chosen to sample the most restrictive sets early,
so the optimization algorithm has broad latitude to fill
remaining holes in property space from the most general sets
toward the end. Since the sets can overlap, the specified
ranges actually determine a minimum bias, e.g., the selections
from the final “good” bin might also be LowMW and/or
polar and/or rigid as well. Likewise, sets to be deemphasized,
like FF_xtrm, must not overlap a general set (such as good),
unless the set is never actually sampled (such as ALL, which
has a range of 0). Each D-optimal step was performed several
times, as shown in the “tries” column, to avoid local optima.
With 1320 profiles times 34 D-optimal steps per profile, this
required performing 44 880 separate D-optimal designs. The
entire calculation took about 1 day elapsed time on an SGI
Indigo 2 with a 150 MHz R4400 CPU running IRIX 5.2.

Some notable designs are presented in Table 5, in order
of decreasing diversity. The most diverse of the 1320 tailored
designs had a score of 102. Comparison to the benchmarks
in Table 4 reveals that this score is comparable to eliminating
80% of the candidates at random or to the best designs from
the rigid or polar subsets. This significant, but acceptable,
reduction in diversity is the penalty paid to achieve a profile
of properties suitable for bioavailable drugs. The worst
tailored design had a score of 83, slightly worse than an
optimal design made after eliminating 90% of all feasible
candidates at random, but still much better than a simple
random selection of 50 compounds from all feasible candi-
dates, with an average score of 50. It is usually possible to
generate carefully tailored designs that maintain much of the
possible diversity.

Table 5 also lists the bin membership from those bins for
which a range was specified. Some bins combine several
overlapping categories, so Table 5 also shows the total
number of drug-like, valid, polar, low MW, and rigid

compounds chosen in each design, e.g., the “drug” column
is the sum of the “drug-polar” and “drug-valid” columns.
Surprisingly, the most diverse design, no. 1, has an unusually
high drug-like bias, having 12 of a possible 14 members from
the drug-like bins. However, its members tend to be high
molecular weight and flexible, and very few were validated.
Design 2 has only 6 drug-like substituents, but has better
low MW and rigid bias. Design 67, with a score of 96, is
the most diverse of the designs with the maximum 17 rigid
groups. The least effort would be required for those libraries
with the full 17 validated substituents. The most diverse
among these is no. 178 with a score of 94.7. This design is
fairly good in every category and would be a good candidate
for synthesis, except that its diversity is disappointingly low.
Design 470, the best design with the maximum 24 low MW
substituents, scores only 92.4.

Since this example library was intended primarily for broad
screening, a high diversity score was desired. Design 35,
with a score of 97, was chosen as a good compromise
between diversity, property bias, and synthetic ease. Even a
very thorough initial review of the candidate reagents rarely
eliminates all undesirable substituents. In this case, examina-
tion of the 50 chosen substituents revealed that one was a
dipeptide, which might cause formulation, delivery, and
metabolism problems. A second, more general complaint was
that the library contained 10 substituents with amide
hydrogens, which are believed to carry similar liabilities.23

A new design rectified these deficiencies. The six dipeptide
reagents were eliminated from all bins by a substructure
search. The number of substituents with amide protons was
reduced by allowing them in the most elite bins, but
removing them from the more general LoPlr, LowMW, polar,
FF_xtrm, good, Drugish, and valid bins. The new bin sizes
and design profile are shown in Table 6. This profile, which
was focused around the previously favored design 35,
contained only 18 possible designs, so the calculation took
only 20 min. The results are shown in Table 7. The best
design had a D-score of 96, showing only a small diversity
penalty for this improvement, and only 6 of 50 substituents
now had amide hydrogens. For this library, the design was
deemed acceptable. More typically, however, further analysis
would lead to additional cycles of evaluation and refinement,
each taking about 10-20 min, before achieving a final
acceptable design.

Having completed the amine design, a 50-member phenol
design was created by using the amine design as a 50-

Table 5. Scores and Profiles of Selected “Tailored” Designs from Table 2

rank
score

(83-101)
LoRgPlV
(7-11)

LoPlrV
(0-6)

LoRgPlr
(5-6)

LoPlr
(4-5)

DrgPlr
(0-10)

DrugV
(2-4)

polar
(2-8)

drug
(2-14)

valid
(11-17)

polar
(30-32)

low
(18-24)

rigid
(12-17)

1 101.6 8 1 5 4 9 3 4 12 12 31 18 13
2 100.6 9 1 6 4 4 2 8 6 12 32 20 15

35 97.1 10 0 6 5 7 4 2 11 14 30 21 16
67 96.1 11 0 6 5 2 4 6 6 15 30 22 17
74 95.9 9 0 5 4 10 4 2 14 13 30 18 14

178 94.7 8 5 6 4 5 4 2 9 17 30 23 14
470 92.4 8 5 6 5 0 4 6 4 17 30 24 14

1320 82.8 8 4 6 4 6 3 3 9 15 31 22 14
a Column 1 is the rank order. Column 2 is the D-score. Columns 3-9 are the number of points drawn from each bin described in Table

2 for which a range was specified. The range is indicated by the numbers in parentheses. Columns 10-14 are total numbers drawn from
bins that require each property. E.g., the “drug” column is the sum of the “Drug-polar” and “Drug-valid” columns.
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member “seed” bin and augmenting it from phenol candidate
bins to yield a tailored design of 100 members. The tailoring
of the phenol design was completely analogous to the amine
design just described. Including the amine derived substit-
uents in the phenol diversity design ensures high diversity
between positions in the final library as well as within
positions.

At this point the reagents could be ordered and validated.
Inevitably, some reagents will be out of stock, and others
will fail in validation. To save time later, Tailor automatically
generates the best D-optimal alternates for each member of
the design, so that they can be ordered in advance and
validated in parallel. To keep the property profile unchanged,
each alternate is chosen from the same bin from which the
original substituent had been selected. Figure 2 shows some
examples. In the first two cases, the best replacement was
an obvious analogue of the original substituent, but in the
other two examples, the D-optimal algorithm completed the
design by selecting a radically different structure, presumably
to fill another large hole in diversity space. The latter
examples are more useful, because if the original selection
fails in validation, that does not suggest that the replacement
will likewise fail. Since the same reagent was often the best

alternate for more than one substituent and it is helpful to
find a dissimilar replacement, second, third, and higher
alternates are often generated. Order sheets were automati-
cally generated for all reagents, sorted by preferred vendor,
including price, structure, name, and catalog number.

Discussion

Whole Molecule vs Fragment Based Properties.The
design of the tailored library was based on the calculated
properties of the fragments from the variable positions in
the library, rather than on the assembled final molecules.
This substituent approach takes advantage of the inherent
structural similarities between all of the members of a
combinatorial library. It assumes that diverse substituents
generate diverse libraries. The obvious risk of working with
substituents is that a design based on fragment properties
does not explicitly account for interactions between the
fragments in the assembled molecules, so assembling diverse
substituents might not result in diverse molecules. However,
since acombinatoriallibrary includes every combination of
substituents, it does form a full factorial design to characterize
any interactions implicitly. The whole molecule alternative
is limited by computer resources. If any of 1000 substituents

Table 6. Bin Profiles Based on Design 35 for the Refinement Design To Remove Dipeptides and Reduce the Number of
Amide Protons

name description no. range tries

seed center+ two pharmas 3 3 1
LoRgPlV low MW, rigid, polar, validated 13 9-11 3
boc available with boc-protected amine 6 1 1
tbu available witht-butyl-protected acid 9 2 2
LoPlrV low MW, polar, validated 21 0-1 1
LoRgPlr low MW, rigid, polar 77 5 2
LoPlr low MW, polar 112 5 2
DrgPlr drug like and polar 88 6-8 3
OKamine diamines that need no protection 46 1 1
DrugV drug like and validated 11 4 2
valid reaction has been validated 76 2 2
Drugish contain pieces from 100 top drugs 139 1 1
LowMW molecular weight< 130 215 2 2
polar H-bond acceptor and logP < 1.5 331 -46 3
FF_xtrm union of FF and extreme bins 54 2 2
good chemistry is expected to work well 649 2 2

Table 7. Scores and Profiles of the 18 Refinement Designs from Table 6, Similar in Profile to Design 35 in Table 5, but with
Dipeptides Deleted and with Amide Hydrogens Allowed Only in the Most Elite Groups

rank
score

(86-96)
LoRgPlV
(9-11)

LoPlrV
(0-1)

DrgPlr
(6-8)

polar
(1-4)

drug
(10-12)

valid
(13-16)

polar
(30)

low
(19-21)

rigid
(14-16)

1 96 10 0 7 3 11 14 30 20 15
2 95 9 0 6 5 10 13 30 19 14
3 93 9 0 7 4 11 13 30 19 14
4 93 11 0 6 3 10 15 30 21 16
5 92 9 0 8 3 12 13 30 19 14
6 92 9 1 6 4 10 14 30 20 14
7 92 10 1 8 1 12 15 30 21 15
8 91 9 1 8 2 12 14 30 20 14
9 91 9 1 7 3 11 14 30 20 14

10 91 10 1 7 2 11 15 30 21 15
11 90 10 0 8 2 12 14 30 20 15
12 89 11 1 7 1 11 16 30 22 16
13 88 10 0 6 4 10 14 30 20 15
14 88 11 0 8 1 12 15 30 21 16
15 87 11 0 7 2 11 15 30 21 16
16 87 10 1 6 3 10 15 30 21 15
17 87 11 1 8 0 12 16 30 22 16
18 86 11 1 6 2 10 16 30 22 16
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could be put at each of 4 positions on a scaffold, the
enumerated virtual library would contain 1012 assembled
compounds. The method just described can be performed
routinely on 4000 substituents in a few days, which has been
sufficient for every library design problem we have encoun-
tered. Any approach which could be applied to even 109

assembled molecules could only use the most primitive of
property spaces and selection methods. We believe the
assumption that diverse substituents yield diverse libraries
is less dangerous than the assumption that very simplistic
property calculations and selection procedures would yield
effective libraries.

Furthermore, property space formed from whole molecule
calculations may not describe the diversity of the final
combinatorial library as well as the corresponding substituent
calculations. For example, the 2-D Daylight fingerprint
descriptors only include paths of up to seven bonds.
However, diversity libraries based on side chain descriptors
for three positions incorporate information on up to 21 bonds
per compound in the final library. Furthermore, including
the scaffold in the calculation disguises information about
the substituents. Any fingerprint bits set by the scaffold are
set in every single molecule, so the presence or absence of
those substructures cannot be distinguished in the side-chains.
Patterson et al. described this phenomenon when they found
that 2-D fingerprint similarity for substituents correlated with
biological activity consistently better than the corresponding
whole molecule descriptors across 20 quantitative SAR data
sets from the literature.24 We have tried designing libraries
where each substituent was attached to the scaffold before
calculation of the property space, and we likewise found that
the computed similarities between members increased and
many important structural distinctions were lost. Again, these
arguments apply specifically to the design of combinatorial
libraries, such as those made by split and mix resin synthesis

or parallel “array” synthesis. Other diversity design problems,
such as selecting subsets of corporate archives or purchasing
compounds from collections of arbitrary structures, require
methods that can deal with whole molecule descriptors.

D-Optimal Design.D-optimal design works by choosing
a subset of substituents from a large candidate set, maximiz-
ing the determinant of the “information matrix”,|X′X|, for
a design matrixX.25 The rows ofX are the substituents, and
the columns are the “model terms”, i.e., the property space
dimensions, and/or higher order terms such as their squares
or cross terms. This minimizes the determinant of the inverse
and, thus, the prediction error for a regression model.
Equivalently, information theory shows that this same
criterion maximizes the expected entropy change, i.e., it
selects the set of substituents that together carry the most
information for estimating the model.8 Roughly speaking,
maximizing the determinant requires large diagonal elements
and small off-diagonals. This implies large variances, so the
selected points are well spread out, and small covariances,
so collinearities are minimized and all the dimensions are
sampled.

In substituent-based, tailored, combinatorial library designs
the total number of substituents at each stage of augmentation
is small, and the number of dimensions in property space is
comparatively large. In fact, the dimensionality must often
be reduced by principal components analysis, so that the
number of dimensions (degrees of freedom) does not exceed
the number of substituents. Since covariance-based methods,
like D-optimal design, minimize collinearities as well as
maximizing spread, they should still produce “balanced”
designs that optimally sample all dimensions, even when
there are few or no extra degrees of freedom. Since simple
distance-based methods ignore collinearity, they are likely
to select sets of points that do not sample the full dimen-
sionality of the property space.

A simple 3-D problem was devised to graphically illustrate
the advantages of covariance-based methods such as D-
optimal design, over a standard distance-based method, at
sampling the full dimensionality of property space. Although
property space is often presented as a hypercube, examining
our property spaces computed from many actual substituent
sets (including this study) showed that the distribution of
points was always roughly elliptical; so for this example, a
random set of test points was generated inside an ellipsoid
from the equationx2/12 + y2/0.92 + z2/0.82 ) 1. (Using the
first three principal components of real data sets gave results
that were essentially the same as this test case.) The simplest
distance-based method that has been recommended for
substituent selection is “MaxMin”, which selects points to
maximize the smallest near-neighbor distance in the design
set.26 While this criterion may work for pure diversity
designs, it is inappropriate for tailored designs, since one
often purposely includes some pharmacophoric analogues
that lie in close proximity in property space, and these would
dominate the MinMax score. Other distance-based methods
spread points out in space by maximizing various averages
of all of the near-neighbor distances or of all pairwise
distances. The “S-optimal” method (“S” for “spread”)
maximizes the harmonic mean of distances between each

Figure 2. Sample alternates chosen by D-optimal design. In the
first two cases, the best replacement was an obvious analogue of
the original substituent. In the other two examples, the D-optimal
algorithm completed the design by selecting a radically different
structure, presumably to fill another large hole in diversity space.
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chosen point and its nearest neighbor in the design.22 Since
it includes all near-neighbor distances but the harmonic mean
gives extra weight to the shorter distances, it is well suited
for diversity design. Criteria that maximize all pairwise
distances, rather than just near-neighbor distances, tend to
“flatten” the designs into the largest few dimensions.

The test results are shown in Figures 3a,b. In each
example, inclusion of the origin was forced as a required
bin. Figure 3a shows the most “diverse” sets of three, four,
five, or six points, including the fixed center, selected by
S-optimal design. The three-point design is collinear. Four-
and five-point designs are coplanar, so the “z” property is

never varied. The six-point design is a slightly puckered
pentagon so it finally gives some (small) variation to thez
dimension. The second set of plots shows the points selected
by the corresponding D-optimal designs using a linear model.
The three-point design is an obtuse triangle, and thus varies
two dimensions. The four-point design is a flattened tetra-
hedron and samples all three dimensions. The five-point
design is a beautifully balanced design consisting of a large
tetrahedron plus the origin at its center. Six points yield a
triangular bipyramid plus center point. Seven points (not
shown) give an octahedron plus the center. Evidently,
because D-optimality sacrifices some spread in order to
minimize multicollinearities, it samples all of the dimensions
of property space even with very few extra degrees of
freedom. Hence, for tailored designs, where the number of
points is frequently close to the number of dimensions,
D-optimality is a good criterion for “diversity”. In these
cases, D-optimal designs generally have reasonably high
S-scores, but S-optimal designs often have poor D-scores.

As an analogous test for the 17-dimensional space of the
current study, D-optimal and S-optimal libraries of 18 points
were generated, insisting on the point nearest the centroid
as the sole fixed requirement in each design. There is no
way to visualize how well 18 points fill 17 dimensions, so
D-optimal and S-optimal calibration designs were also run.
The results are compiled in Table 8. To visually compare
the D-scores and S-scores in Figure 4a, they were both
linearly scaled to set the score for a random design at the
bottom of a diversity “yardstick” and the pure maximal
diversity design at the top. The calibration points for
randomly reduced candidate sets are indicated and have been
connected with dotted lines to help visually align the two
scales. The D-optimal design forced to include the center
point had a D-score of 36.3, which calibration showed was
only slightly below the maximum possible value for an 18-
point design of 37.0 (with no center point requirement). The
S-optimal design requiring the center point had an S-score
of 3.92, again very comparable to the S-optimal maximum
possible score of 3.94. The D-optimal design with the fixed
center point had a respectable S-score of 3.5, roughly
comparable to an S-optimal design run on 33% of the
candidates. The S-optimal design with the fixed centroid,
however, had a relatively poor D-score of 27.9, roughly
equivalent to throwing away 88% of the data at random and

Figure 3. (a) Sample 3-D S-optimal designs for three, four, five,
and six points including a center point. Random candidate points
were generated inside an ellipsoid from the equationx2/12 + y2/
0.92 + z2/0.82 ) 1. (b) Sample 3-D D-optimal designs, using a
linear model, for three, four, five, and six points including a center
point. Random candidate points were generated inside an ellipsoid
from the equationx2/12 + y2/0.92 + z2/0.82 ) 1.

Table 8. Results from Designs of 18 Points in the
17-Dimensional Property Spacea

method size D-score D-σ S-score S-σ

100% 762 37.0 0.38 3.94 0.04
D-opt. w/ center pt 762 36.3 3.53
50% 381 35.0 0.85 3.68 0.03
20% 152 30.2 0.94 3.41 0.10
S-opt. w/ center pt 762 27.9 3.92
10% 76 26.7 1.11 3.19 0.11
5% 146 21.4 1.40 2.77 0.12
random (2.4%) 76 13.83 1.34 1.79 0.35

a Methods listed as a percent indicate a fraction of the candidate
set chosen at random. D-σ and S-σ are standard deviations for five
such random subsettings. “D-opt. w/ center pt” indicates the point
nearest the centroid of property space was augmented with 17
additional points by D-optimal designslikewise for S-optimal
design.
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performing D-optimal design on the remaining 12%. Nev-
ertheless, it is still much better than random selection
(keeping 2.4%), with a D-score of only 14.

Principal components analysis was performed to test the
approximate dimensionality of the designs. For the D-optimal
design, 15 PCs were required to cover 99% of the variance,
so the 18 points could be said to sample about 15 of 17
possible dimensions. For the S-optimal design only 12 of
the 17 PCs were required to cover 99% of the variance, so
by this measure, it captured three fewer dimensions than
D-optimal design. Finally, the average correlation coefficient
between variables for D-optimal design was 0.29, but was
0.34 for the S-optimal design, showing greater collinearities
in the S-optimal design. Hence, D-optimal design sacrificed
a small amount of spread (redundancy) but did a better job
of covering property space.

Figure 4b uses the calibration data from Table 4, scaled
as above, to visually compare S-optimal and D-optimal based
tailored designs of 50 points. The S-score for the D-optimal
based tailored design was 2.3, very comparable to the score
of 2.5 for the actual S-optimal based tailored design from
the same bin profile. These values are comparable, respec-
tively, to selecting 17% or 13% of the “all” set at random
before performing a pure S-optimal design. However, the
D-score for the S-optimal based tailored design was only
77.5, compared to 96 for the D-optimal based tailored library.
As Table 4 shows, this is equivalent to eliminating all but
9% of the candidates vs 15%, respectively. A random design,
with a score of 50, corresponds to 6.6%, so the D-score for
the S-optimal based tailored design is approaching random.
Hence, the D-optimal based tailored design has a decent
S-score, but the S-optimal based tailored design has a poor
D-score, even in this tailored library with almost three times
as many points as the number of dimensions.

As the number of points exceeds the number of dimen-
sions, D-optimal design will eventually suggest resampling
some points. In the three-dimensional example above this
happened at nine points. This indicates that more points were
requested than are required to estimate a linear model, so
higher order model terms could be added to the model. A
useful rule of thumb is to add cross terms from the higher
principal components until the S-score indicates that re-
sampling has been prevented. An alternative approach is to
use “Bayesian optimal design”, which automatically adds
some weight to all of the cross terms.27 In practice, adding
enough cross terms to saturate the model generally works
well for tailored designs (see Methods above).

It should be reiterated that this analysis was specifically
aimed at problems where part of the design is preselected
and the number of points is not much larger than the number
of dimensions. For other problems, such as selecting a subset
from a corporate archive of hundreds of thousands of
compounds in a space of only five or six dimensions, other
methods would be preferred, such as sampling from cells in
close packed lattices. An additional limitation of D-optimal
design is that the scores can only be compared between
libraries of the same size. S-optimal scores can be compared
between libraries of different sizes so they are useful for
initial studies of the appropriate number of substituents.

Evaluation of the Library. The goal of this library design
example was to provide high structural diversity while
constraining pertinent physicochemical properties to suitable
ranges for small molecule drugs. To examine this, Figure
5a-d presents histograms and quantile box plots for three
sets of substituents: the full set of 756 useful amines, the
final tailored design of 50 compounds with a diversity score
of 96 (see above), and the maximally diverse D-optimal
design of 50 compounds with no bias at all which had a
diversity score of 136 (see Table 4). Distributions are
presented for four properties: molecular weight, calculated
log P, number of rotatable bonds, and distance from the
center of property space. Tables 9-12 give the corresponding
quantiles, means, and numbers of observations. The boxes
in the “box plots” indicate the 25, 50, and 75 percentiles.
The diamonds depict the means and standard deviations.

b

a

Figure 4. (a) 18-Point “yardsticks” of D-scores and S-scores. 100%
refers to the maximally diverse designs. Other percentages refer to
randomly removing all but that fraction of the candidates and
determining the maximally diverse 18-point designs. The lowest
value is a random selection of 18 points. The arrows compare the
S-score of a D-optimal design and the D-score of an S-optimal
design. (b) 50-Point “yardsticks” of D-scores and S-scores. 100%
refers to the maximally diverse designs. Other percentages refer to
randomly removing all but that fraction of the candidates and
determining the maximally diverse 50 point designs. The lowest
value is a random selection of 50 points. The upper arrows compare
the S-score of a D-optimal design and the D-score of an S-optimal
design. The lower arrows are similar comparisons for tailored
designs.
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Figure 5. (a) Distances from center of property space for three designs of 50 amines each. Histograms and quantile box plots show that
the tailored design does not favor the extremes of property space as does a simple D-optimal “diversity” design. (Quantiles are in Table 9.)
(b) Molecular weights for three designs of 50 amines each. Histograms and quantile box plots show that the tailored design does not favor
the extremes of molecular size as does a simple D-optimal “diversity” design. (Quantiles are in Table 10.) (c) Values of log Kow for three
designs of 50 amines each. Histograms and quantile box plots show that the tailored design does not emphasize the extremes of high and
low lipophilicity as does the simple D-optimal “diversity” design. (Quantiles are in Table 11.) (d) Number of rotatable bonds for three
designs of 50 amines each. Histograms and quantile box plots show that the tailored design does not emphasize flexible substituents as does
the simple D-optimal “diversity” design. (Quantiles are in Table 12.)
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Additional tick marks are the other quantiles listed in Tables
8-11. The distributions of the full candidate set represent
the expected distributions of the random sets, which had an
average diversity score of only 50 (see Table 4).

Concern has been raised that pure D-optimal designs (as
well as other pure diversity designs) sample only the “outer
edges” of property space.26 The radial distributions in Figure
5a and Table 9 show that, for better or worse, the pure
D-optimal diversity set does indeed oversample the extremes
of property space relative to the original distribution. The
tailored design shows only a modest outward shift relative
to the candidates. Apparently, the constraints of sampling

from property bins counteracts the D-optimal algorithm’s
propensity to sample mainly remote regions of property
space.

The histograms and quantile boxes of the three properties
in Figure 5b-d show that the pure diversity set distributions
are relatively broad and flat and include most of the highest
and lowest values of each property as shown in Tables 10-
12. Recall that CLOGP is actually one of the 19 dimensions
of the property space. Molecular weight and number of
rotatable bonds were not specifically included in the property
space calculations, but they are indirectly included through
correlations with topological indices, so extremes of property
space might well imply extremes of these properties as well.

Examining the property histograms shows that the pure
diversity design emphasized large flexible groups with either
extremely high or extremely low lipophilicity. Orally avail-
able drugs tend to be small, rigid compounds with intermedi-
ate lipophilicity, so pure diversity designs bias libraries away
from ideal drug properties. The tailored library’s property
distributions have wide tails but are not as flat and extreme
as the pure diversity designs. This is understandable, since
only a few members from the extreme bins were permitted
in this design. It is more hydrophilic than the original
distribution: including a few extreme values, but concentrat-
ing most of the members in the desirable moderately
hydrophilic region. About 75% of the substituents in the
tailored set have three or fewer rotatable bonds versus four
in the original distribution and five in the pure diversity set,
showing that tailoring has limited the fraction of flexible
substituents. The median (50%) molecular weight in the
tailored design is lower than the original distribution and
much lower than the pure diversity design, but there is a
curious bimodal distribution with peaks at about 130 and
200. The pure diversity design has an extremely top heavy
molecular weight distribution, with the most frequent value
in the histogram actually being the highest MW slice, which
had a very low original frequency. Since the low molecular
weight bin was strongly emphasized in the tailored profile,
this suggests that structural diversity requires complexity,
and complexity requires mass. Recall that the molecular
weight cutoff for the low MW bin was 130. The diversity
algorithm emphasizes the heaviest members available in each
bin. The bimodal distriution is aliasing from the two discrete
MW cutoffs: the peak near 130 from sampling the low MW
bins and the other at the highest values from sampling the

Table 9. Frequency Distributions of Distances from the
Centroid of Property Spacea

quantile, % all tailored max div

100.0 5.38
99.5 5.20 5.30 5.38
97.5 4.73 5.27 5.36
90.0 3.96 4.23 5.07
75.0 3.57 3.97 4.75
50.0 3.23 3.44 3.86
25.0 2.80 3.15 3.47
10.0 2.48 2.86 3.08
2.5 2.22 2.42 2.72
0.5 2.15 2.36 2.64
0.0 2.09
mean 3.24 3.54 4.03
N 756 50 50

a Column “all” is the distribution for the original candidate set.
Column “tailored” is the tailored design from this study. Column
“max div” is the maximally diverse D-optimal design of 50
substituents from the “all” set.

Table 10. Molecular Weight Frequency Distributions

quantile, % all tailored max div

100.0 249.36
99.5 246.71 241.46 249.36
97.5 232.44 238.96 249.32
90.0 206.29 216.87 244.22
75.0 183.57 200.29 217.82
50.0 153.18 137.18 172.77
25.0 121.18 114.19 128.95
10.0 97.15 76.31 74.24
2.5 71.12 63.13 34.36
0.5 45.08 60.10 31.06
0.0 31.06
mean 152 150 168
N 756 50 50

Table 11. CLOGP Frequency Distributions

quantile, % all tailored max div

100.0 6.63
99.5 5.36 6.63 6.45
97.5 3.45 5.79 6.38
90.0 2.54 2.52 3.33
75.0 1.92 1.08 2.20
50.0 1.04 0.10 0.73
25.0 -0.06 -0.99 -1.06
10.0 -0.92 -1.58 -3.31
2.5 -2.12 -3.63 -4.74
0.5 -4.38 -4.19 -4.76
0.0 -4.76
mean 0.89 0.18 0.48
N 756 50 50

Table 12. Frequency Distributions for Counts of Rotatable
Bonds

quantile, % all tailored max div

100.0 14
99.5 12 12 14
97.5 8 11 13.5
90.0 5 7 9
75.0 4 3 5
50.0 2 2 3
25.0 1 1 1
10.0 1 1 0
2.5 0 0 0
0.5 0 0 0
0.0 0
mean 2.74 2.76 3.44
N 756 50 50
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bins with no specific MW restrictions. Due to the lack of
appropriate controls, it is difficult to say whether tailored
designs are producing more or fewer hits than the earlier
maximum diversity libraries; it may well be fewer. It is
qualitatively apparent, however, that the average hits from
tailored libraries are more attractive leads in terms of polarity,
rigidity, and MW.

Conclusion

The intended purpose of this tailored library was for broad
screening. Such libraries are often referred to as “random
libraries”. This designation might appropriately indicate that
the library is equally suited for any arbitrary target. However,
this exercise showed that random selection of compounds
for “random screening” was poor both in structural diversity
and in distribution of physicochemical properties. More
recently, such libraries have been referred to as “diversity
libraries”. Pure diversity designs, however, were found to
be systematically biased toward heavy, flexible compounds
with very high or very low lipophilicity. These properties
are poorly suited to yield bioavailable drugs. Contrary to
what these names suggest, designing optimal libraries for
broad screening requires a combination of property calcula-
tions, structural diversity calculations, experience, and good
medicinal chemical intuition. Stratified D-optimal sampling
from bins provides machinery to combine all of these
requirements.

If this much tailoring is useful even in broad screening
designs, how much more can it be used in target-focused
problems? Two principal appeals of this approach to tailoring
property distributions are generality and simplicity. As long
as a medicinal chemist can identify which compounds or
fragments are likely to share a property, a bin can be added
to influence its contribution to the design. The fragments
that dock into a receptor model, problem substituents
indicated by a metabolism model, groups with desirable
physicochemical properties, or just intuitively favored frag-
ments, can all be simultaneously managed by this method.
Other, more algorithmic methods are possible. Borth et al.
presented a technique to simultaneously optimize additional
criteria, such as cost or synthetic difficulty along with the
D-criterion for information content, such as for finding the
most diverse design possible for a given price.8 Although
this approach is rigorous and highly automated, the weights
given to various criteria are still subjective, and the intuitive
“what if” interaction with the design is absent. Using multiple
bin profiles, one works directly with the tradeoffs between
diversity and other design criteria. Balancing these tradeoffs
benefits from art, experience, and the clarity of “hands on”
exploration more than from a complex objective function.
It is close to the way practicing medicinal chemists and
biologists think about drug discovery and thus facilitates
interaction within a project team.

While this work criticizes pure diversity designs, it does
not marginalize the need for good diversity computation
methods. High diversity is essential for efficient screening
libraries, and it is the privileged property that is optimized
within the constraints of the bin profiles. However, it is only
one of many important factors, some of which are difficult

to quantify, and can only be recognized by the practiced eye
of experienced medicinal chemists. Stratified sampling from
bin profiles allows experienced drug discovery teams to
design well-tailored libraries that are diverse but satisfy these
additional, often more nebulous, factors as well.
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